
COMMUNICATING
ARCHITECTURE
WITH THE C4 MODEL

How the C4 model brings clarity, structure, and
shared understanding to software architecture

S P O N S O R E D  B Y



CONTENTS

1 WHY THE C4 MODEL

3 THE 4 LEVELS IN PRACTICE

2 WHAT IS THE C4 MODEL

4 THE C4 MODEL CHECKLIST

5 RESOURCES TITLE HERE

6 E-COMMERCE MODERNIZATION

7 IN SUMMARY



We started IcePanel in 2020 out of frustration with existing products.
Products that slowed teams down instead of moving forward.
Products that felt dull instead of delightful.
Products you were told to use, not excited to use.
Products optimized for sales, not built for us.

Communicating complex systems is harder than building them.
Designing the future feels stuck in the past.
Slow, fragmented, and full of miscommunication.
One step forward, two steps back.

So we did what builders do and launched IcePanel. We’re still early in
our journey, focused on building the best tool for software architects.

If you care about architecture, you’ve likely seen Luca on LinkedIn,
YouTube, or at a conference. He has a knack for explaining complex
topics in a way that’s easy to understand. A perfect fit when we were
looking for someone to write an ebook about the C4 model. We’ve
admired Luca’s work for a long time and are excited to partner with him
to bring this book to life.

Happy reading and stay chill!

ABOUT ICEPANEL



1C H A P T E R

WHY THE C4 MODEL



WHY THE C4 MODEL
Every sociotechnical system demands a holistic perspective, one that
integrates understanding of business requirements, architectural
characteristics, and implementation readiness before a single line of
code is written. 

Effective software systems are not born from individual components in
isolation, they emerge from a clear vision of how the system must
behave, evolve, and support the business context.

A shared architectural model becomes essential, not only for alignment
among stakeholders but also for steering design decisions with intent
and precision. 

Traditional modeling languages such as UML were designed with rigor
and formality in mind, but their complexity often renders them
impractical in fast-moving, agile environments.

For example, a UML deployment diagram may attempt to capture every
server, database, and network connection in a system, but the level of
detail quickly becomes overwhelming and hard to maintain. As a result,
many teams abandon these models in favor of quick “boxes and lines”
sketches, diagrams that are easy to draw but prone to inconsistency,
ambiguous naming, and mixed levels of abstraction. 

These compromises may serve short-term convenience, but ultimately,
they weaken the shared understanding that architecture demands.

The C4 model addresses these shortcomings by offering a set of
consistent, layered abstractions: Context, Containers, Components, and
Code. These levels allow teams to zoom in and out of the system in a
manner similar to how Google Maps lets you transition from a high-level
view of a city to detailed street-level insights. 

C4 MODEL



In the words of its creator, Simon Brown, the C4 model is about creating
“maps of your code”, diagrams that reveal both where the system lives in
its environment and how its internal pieces fit together.

This layered approach is not merely visual, it is communicative.

Executives and non-technical stakeholders can immediately grasp high-
level context, such as who uses the system and why. Architects and
developers can dive deeper into containers and components, exploring
the structure and responsibilities of the system. When necessary,
typically during design reviews or development planning, a code-level
view such as a UML class diagram offers precision where precision
matters. 

By tailoring the level of abstraction to the audience, the C4 model
ensures clarity for each stakeholder group without compromising
consistency or traceability. It reduces ambiguity, promotes more
effective documentation, and fosters an architectural vocabulary that
spans business, design, and implementation. 

THE LEVELS



WHAT THIS GUIDE COVERS 

This guide introduces the C4 model as a practical framework for
visualizing and communicating software architecture.

It explains how its four levels—Context, Containers, Components, and
Code—help teams reason about systems at different levels of
abstraction while maintaining consistency and clarity across all views.

Through the modernization of an e-commerce platform, the guide
demonstrates how to apply the C4 model in practice, highlighting best
practices, common pitfalls, and the benefits of using modeling tools like
IcePanel to keep diagrams accurate, connected, and easy to evolve.

Together, these insights show how the C4 model turns architecture
documentation into a living, shared understanding across teams.



2C H A P T E R

WHAT IS THE
C4 MODEL 



WHAT IS THE C4 MODEL
The C4 model is a lightweight framework for visualizing the architecture
of software systems. Its purpose is not to replace detailed specifications
or low-level diagrams, but to provide a clear, consistent way of
communicating structure at different levels of abstraction. 

The model is built on a simple idea: a software system can be
understood as a set of “maps,” each offering a different level of detail. 

At the highest level, you see how the system fits into its environment. As
you zoom in, you uncover the internal building blocks, their
responsibilities, and their relationships. This layered approach avoids the
pitfalls of trying to express everything in a single diagram, while still
keeping the different views consistent and connected. 

THE LEVELS EXPLAINED



The four layers of the model are: 

This progression creates a structured way to “zoom in” from a broad
view of the system to detailed implementation concerns. The value of
the model lies not in producing exhaustive diagrams, but in ensuring
that each level communicates clearly to its intended audience.

Executives and product stakeholders can focus on context and
containers, while architects and developers can rely on components and
code for technical design discussions. 

By offering just enough formality to stay consistent, yet remaining
lightweight enough to be practical, the C4 model bridges the gap
between the informal ad-hoc sketches and the rigidity of traditional
modelling languages. 

System Context: shows the system in its environment, highlighting
users and external dependencies. 

Containers: identify the high-level technology building blocks
(runnable and deployable units) of the system such as applications,
databases, or message brokers. 

Components: describes how a container is internally structured into
modules or controllers and how those collaborate.
 
Code: offers a close-up of the implementation level, typically with
class or function diagrams, where detail is needed. 



3C H A P T E R

THE 4 LEVELS
IN PRACTICE



The strength of the C4 model lies in its ability to describe a system at
different levels of abstraction, depending on the audience and the
purpose. Each level focuses on a specific story and offers a diagram that
complements the others without duplicating them. 

The system context diagram represents the software system as a single
box within its environment, showing the people, organizations, and
external systems that interact with it.

At this level, the system is treated as a distinct product or service, often
owned and maintained by a single team, delivering value to its users
while potentially integrating with other systems.

For example, an online retail platform might interact with customers
who browse and purchase products, warehouse staff who manage
fulfilment, and a payment gateway such as Stripe.

This view emphasizes scope and boundaries, clarifying who uses the
system, what external systems it depends on, and how it fits into the
broader environment, without delving into internal implementation
details. 

THE 4 LEVELS IN PRACTICE

LEVEL 1: CONTEXT

CONTEXT

https://c4model.info/


A container diagram zooms in to a single system to show the
applications, services, and data stores that make up that system,
representing the high-level technology choices and deployment units.
Each container is a separately deployable and/or runnable application or
service with its own responsibilities. 

In the online retail example, containers might include a web application,
a mobile app, an API backend, a relational database for product and
order data, and a message broker to coordinate asynchronous tasks
such as sending order confirmations. This view helps architects and
technical stakeholders understand how the system is composed, how
responsibilities are distributed, and how containers interact with each
other and with external systems. 

LEVEL 2: CONTAINERS 

CONTAINERS



A component diagram zooms into a single container to show the major
building blocks that collaborate to fulfill its responsibilities. Each
component has a clearly defined role and interface, making the system
easier to understand, maintain, and evolve.

For example, within the backend API container of an online retail
platform, the Order Service might be divided into components such as
the Order Controller, which handles incoming requests; the Order
Processor, which manages business logic and validation; and the
Payment Gateway Adapter, which communicates with external payment
providers like Stripe. 

This view is primarily intended for architects and developers, providing a
clear map of the internal structure of a container while avoiding
unnecessary detail for higher-level stakeholders. 

LEVEL 3: COMPONENTS

COMPONENTS



The code diagram zooms into a single component to show its internal
implementation using classes, functions, or other programming
constructs. It captures how the component fulfills its responsibilities,
providing precision where it is needed for development or design
discussions.
 
For example, within the Order Service component of an online retail
platform, a code diagram might show classes such as Order, OrderItem,
and Customer, along with the methods that orchestrate order validation,
payment processing, and inventory updates. 

This level is primarily intended for developers, offering insight into the
system’s implementation while maintaining alignment with higher-level
diagrams. It is rarely necessary; many areas of a system can stop at the
component level, with code diagrams created only where additional
clarity is required. In modern practices, code-level diagrams are rarely
used except for onboarding, design reviews, or highly regulated systems
that demand precise documentation. 

LEVEL 4: CODE 

CODE



Tailor the level of detail to your audience
Not every stakeholder needs to see every level. Executives and
product managers typically benefit from system context and
container diagrams, while developers and architects may need
components and, occasionally, code-level views. 

Invest time in intention and clarity 
Before creating diagrams, think carefully about what you need to
express. Gather requirements, understand your audience, and
translate those into architecture.

Without clarity of intention, it’s difficult to design effective C4
diagrams across the different levels.

Use consistent naming and notation 
Define clear conventions for naming systems, containers, and
components.

Consistent labels, symbols, and colors improve comprehension
and reduce ambiguity across diagrams.

It is important to note that Levels 3 and 4 are not always necessary for
every system or every part of a system. In many cases, understanding
the system down to the container level is sufficient for most discussions,
planning, and decision-making. Teams may choose to create component
diagrams only for areas that require additional clarity, such as complex
business logic or critical services.

When using the C4 model, the goal is clarity and effective
communication, not exhaustive documentation. The following
guidelines can help teams get the most value from this approach: 

GUIDANCE ON COMPONENTS
AND CODE LEVELS 

BEST PRACTICES AND TIPS



Start with context and containers
Begin with the system context and container diagrams to
establish boundaries, dependencies, and high-level
responsibilities. Drill down to components only when more clarity
is needed. Code-level diagrams are optional and should be
reserved for complex areas or specific needs. 

Iterate and maintain diagrams 
Architecture evolves over time. Treat diagrams as living
documents, updating them to reflect major changes. Avoid
spending excessive time perfecting diagrams that quickly
become outdated.

Leverage tooling and templates
Use diagramming tools or templates that support layering and
consistency. This reduces effort and helps maintain a standard
visual language across your documentation. 

THE C4 MODEL CHECKLIST



4C H A P T E R

THE C4 MODEL
CHECKLIST



1 THE DIAGRAM HAS A CLEAR AND
DESCRIPTIVE NAME

5 RELATIONSHIPS BETWEEN OBJECTS
(CONNECTIONS) ARE LABELED TO INDICATE
INTENT OR FLOW.

2 A SHORT DESCRIPTION EXPLAINS WHAT THE
DIAGRAM REPRESENTS AND ITS PURPOSE.

3 ALL OBJECTS ARE NAMED CLEARLY, WITH
ACRONYMS EXPANDED OR EXPLAINED.

4 OBJECT RESPONSIBILITIES ARE SELF-
EXPLANATORY OR SUPPORTED BY
DISPLAYED DESCRIPTIONS.



6 NOTATION AND SYMBOLS ARE EXPLAINED,
IDEALLY THROUGH A LEGEND.

10 THE INTENDED AUDIENCE CAN
UNDERSTAND THE DIAGRAM WITHOUT
ADDITIONAL EXPLANATION.

7 SHAPES, LINE STYLES, BORDERS,
ARROWHEADS, ICONS, AND COLORS ARE
USED CONSISTENTLY AND MEANINGFULLY.

8 OBJECT SIZES ARE APPROPRIATE AND
PROPORTIONAL TO THEIR IMPORTANCE OR
HIERARCHY.

9 THE DIAGRAM SHOWS THE RIGHT LEVEL OF
DETAIL FOR THE INTENDED AUDIENCE.



5C H A P T E R

DIAGRAMMING VS
MODELLING



How many times have you opened a diagram in Confluence or Miro only
to realize it was outdated, inconsistent, or missing key changes? 

It happens all the time.
  
Diagramming is great for explaining an idea in the moment, but as soon
as the system evolves, they stop reflecting reality. Suddenly you’re not
just explaining architecture, you’re explaining the gaps between the
diagram and the real system. 

Modelling, by contrast, builds a single source of truth.
A structured representation of systems, containers, components, and
relationships. This model becomes the foundation for automatically
updating multiple C4 diagrams, ensuring that changes propagate across
all views without duplication or drift.

Moreover, modelling allows teams to scale many diagrams across the
organization by enforcing consistency and ensuring that the objects in
diagrams are up to date.

Imagine changing the name of an external system in the context
diagram. In a pure diagramming tool, you must locate and update each
diagram where that system appears manually. In a modelling tool, the
change happens once in the model, and all diagrams reflect it instantly.

Moreover, the model lets teams query architecture, for example,
identifying all components depending on a particular service or
extracting insights on deprecated technology stacks. 
Modelling does demand more upfront effort such as defining names,
metadata, and structure, but it pays off with consistency, discoverability,
and agility. 

When applied to C4, modelling allows you to author your context
diagram, then seamlessly refine into containers, components, and
deployment or dynamic views, all connected to the same underlying
architecture. 

DIAGRAMMING VS MODELLING 



Tools like IcePanel embody this modelling-first mindset.
They allow architects to capture architecture as a connected models
aligned with the C4 model, ensuring that diagrams remain in sync,
dependencies are easier to track, and the architecture evolves as the
system does. 

Now let’s move from the theory to real examples so you can see how
the C4 model works in practice. I’ll use IcePanel to walk through a
system and show you how modelling makes architecture
documentation reliable, consistent, and easy to evolve. 

https://icepanel.io/c4-model


6C H A P T E R

AN E-COMMERCE
MODERNIZATION



A growing e-commerce company faced mounting challenges with their
legacy monolithic platform. Releases had become slow and
cumbersome, making it difficult to respond quickly to customer needs
or implement new features.

The system had grown over the years into a tightly coupled architecture,
with complex dependencies between modules, making maintenance
and scaling increasingly costly. The organization wanted to increase
agility, reduce operational complexity, and empower teams to move
faster, while ensuring stability and reliability for critical business
operations.  

After evaluating several approaches, the company decided to modernize
using microservices, leveraging internal expertise in Node.js and
deploying it on AWS. 

A serverless-first architecture was chosen to accelerate releases, reduce
the operational burden on the platform team, and enable teams to work
autonomously within a federated organizational model. This approach
also allowed developers to take advantage of battle-tested cloud
infrastructure without needing deep platform expertise, providing both
speed and safety in delivering new features. 

In this example, we will use the C4 model to visualize the new system.
We will explore different layers, from context down to components,
while skipping the code-level view, which is rarely needed. 

To illustrate the migration journey, part of the system will be shown as
already modernized into microservices, while another part will remain in
the monolith. Each layer will include concrete examples to provide
clarity on how the C4 model can be applied in practice, helping readers
understand not just what the architecture looks like, but how to
communicate it effectively across different stakeholders. 

CONTEXT AND APPROACH

THE CONTEXT LEVEL



The system context level is the highest level of abstraction in the C4
model. At this stage, the system is represented as a “black box” and the
focus is not on its internals but on how it interacts with the world
around it. 
The goal is to show who uses the system and what other systems it
communicates with, providing a clear boundary of responsibilities and
dependencies.
At this level, diagrams usually include: 

People (actors): end users, customers, or roles that interact with the
system. 

Software systems: external applications or platforms that the system
integrates with, such as payment gateways, notification services, or
CRMs. 

The system itself: the central box that represents the software we
are building or modernizing, like in our case. 

INTERACTIVE DIAGRAM

CONTEXT LEVEL

https://s.icepanel.io/bFTVyAkfwHLwV8/fu6M
https://s.icepanel.io/bFTVyAkfwHLwV8/fu6M


In our e-commerce modernization example, the diagram captures
exactly these elements.

At the center, we find the new e-commerce platform, which represents
the modernized part of the system built with microservices and micro-
frontends.

Around it, several external systems define its environment: Salesforce for
user management, Twilio for notifications, Adyen for payments, and a
CMS SaaS for managing the product catalogue. 
On the fulfilment side, the diagram shows the legacy fulfilment system,
a monolithic application that continues to handle shipping and order
processing. 

On its side sits the legacy e-commerce platform, which remains in use
for parts of the business not yet migrated.  

By including these systems, the diagram provides a realistic picture of
the transitional state: the new e-commerce system already interfaces
with both modern external services and existing monolithic
components. 

The system context level is designed for broad communication. It
provides a view that is simple enough for non-technical stakeholders to
follow, yet precise enough for architects to use as a foundation for
deeper design.
 

Executives and business stakeholders benefit from this view
because it highlights scope and boundaries. They can see who
interacts with the system, which external providers are critical to its
operation, and how legacy systems remain part of the picture. This
allows them to assess risks, plan budgets, and align technology
choices with business strategy. 

Architects and technical leads use this view early in discussions to
frame the system’s boundaries and external dependencies before
diving into containers or components. It ensures the entire team
starts with the same understanding of what the system is and what it
is not. 

AUDIENCE AND USE CASES



This level is most valuable when you need to step back and see the big
picture, as Simon Brown puts it. In distributed systems, new features
often span multiple domains, requiring conversations that align
business and technical stakeholders toward the same goal. A context
diagram provides a shared view. It is equally useful when evaluating new
third-party integrations, since it shows how external systems fit within
existing boundaries and responsibilities. Finally, this abstraction is
particularly effective for onboarding new team members, giving them a
clear understanding of the system’s scope, its users, and its key
dependencies before they dive into lower-level details. 

In our case, the context diagram ties directly back to the business goals
driving the modernization. The company’s push for agility and faster
releases is reflected in the choice of external services like Twilio,
Salesforce, and Adyen, which reduce the need for building these
capabilities in-house. The continued presence of legacy fulfilment and e-
commerce systems shows how the organization is managing transition
and risk, ensuring critical operations remain stable while new
capabilities are delivered.

In other words, the boundaries drawn in the context diagram are not
arbitrary: they mirror the business priorities of faster delivery, reduced
operational burden, and a clear path to modernization without
disrupting ongoing sales and fulfilment. 
 

 



Teams often run into a few recurring mistakes when creating system
context diagrams. A frequent one is mixing internal containers with the
system context, for example, showing APIs, databases, or services that
belong to the internals of the platform.
  
This blurs the abstraction and makes the diagram harder to interpret.  

Another pitfall is adding excessive technical detail, such as protocols or
infrastructure choices, which distracts from the purpose of this level.
Finally, inconsistent naming of actors and systems, for instance,
alternating between “Customer” and “End User” in the same diagram,
can create confusion and weaken the shared understanding the
diagram is meant to provide. Specifically, this problem can be easily
solved with modelling tools like IcePanel that provide a simple way to
drag and drop existing elements in different C4 model layers. 

To make the most of this level, aim to keep diagrams simple and
readable, focusing only on people, systems, and their relationships. Label
relationships clearly, but avoid technical jargon that only a subset of the
audience will understand. Remember, these diagrams might be helpful
in executive presentations, strategic planning sessions, and high-level
roadmaps, where clarity on boundaries and dependencies is most
important. Treat it as a communication tool first and foremost: its
strength lies in aligning diverse stakeholders around a shared view of
the system’s place in its environment. 

COMMON PITFALLS

PRACTICAL TIPS

THE CONTAINERS LEVEL



When we step from the System Context into the Containers level, the
C4 model asks us to represent the major runtime building blocks that
make up our system. A container is any application or data store that
requires its own runtime or execution environment. It can be a web
application, a mobile app, a microservice, a database, or even an
external SaaS dependency. 

This definition is crucial: a container is not a Docker container. 

In C4 terminology, the word “container” comes from the idea of
“containing” code or data. Each container is something you can deploy,
operate, and monitor independently. 

This view is especially valuable because it balances abstraction with
technical concreteness. A system context diagram might simply state
that “the e-commerce system integrates with a payment provider,” but
at the container level, we learn how this is done. 

CONTAINERS LEVEL

INTERACTIVE DIAGRAM

https://s.icepanel.io/bFTVyAkfwHLwV8/wOBz
https://s.icepanel.io/bFTVyAkfwHLwV8/wOBz


The Catalog subdomain is responsible for surfacing products to
customers. In C4, we represent this subdomain as a group of containers,
each with a clear runtime boundary: 

Catalog MFE (Micro Frontend) A frontend application written in
Node.js, deployed independently, and responsible for rendering the
product catalog in the browser. In C4, this is represented as a
container of type application, annotated with the technology
(Node.js) and responsibility (“Provides the products catalog”). 

Catalog Backend A backend-for-frontend (BFF)-style API that
retrieves products and serves them to the frontend. Again, this is a
separate container, deployed in its own runtime, exposing a
JSON/HTTPS API. 

Catalog Database A persistent data store—modeled as a container
because it runs independently and has a clear runtime (NoSQL +
DynamoDB). In the C4 model, databases are first-class citizens: you
treat them as containers because they require deployment, scaling,
and operational considerations. We annotate them with their
technology (MongoDB, DynamoDB) and their purpose (“Stores
products metadata, references to media assets like videos or
images”). 

Catalog Metadata Backend A service responsible for synchronizing
product information from an external CMS (Contentful) and pushing
updates into the Catalog Database. It also forwards data to the
Personalization SaaS. This is a textbook example of a microservice
container: it runs independently, has a well-defined API surface, and
a clear responsibility. 

By modeling each of these as containers, we make visible not just the
components of the catalog but also their interactions: the MFE depends
on the Backend, which queries the Database; the Metadata Backend
synchronizes data from external SaaS providers. 

CATALOG SUBDOMAIN



The Checkout subdomain is responsible for order placement and
payment processing. Again, each container is a runtime unit: 

Checkout MFE A frontend container providing the checkout user
interface. It orchestrates calls to the backend and external payment
provider. 

Checkout Backend The API for placing an order. Represented as a
container because it is a deployable Node.js service exposing an
HTTPS interface. 

Payment Backend A dedicated container for handling payment
processing. It abstracts the integration with Adyen and persists
receipts. In C4, it’s best practice to separate such concerns into their
own containers so they can evolve independently. 

Orders Database Another database container, implemented using
DynamoDB and DynamoDB Streams, storing order details and
emitting changes for downstream processes (e.g., fulfilment). 

Payments Database A DynamoDB table for storing receipt IDs,
dates, amounts, and other payment metadata. Annotated as a data
store container, with a clear responsibility and technology tag. 

Notice how this view clarifies that the checkout flow is not one
monolithic backend but a set of cooperating containers, each with their
own runtime and responsibility. 

CHECKOUT SUBDOMAIN



The container diagram is particularly useful for audiences who need a
deeper technical understanding without drowning in implementation
details: 

Architects and senior engineers: It helps them reason about system
boundaries, identify ownership, and ensure that the architecture
supports business capabilities like scalability, resilience, or
compliance. 

Developers new to the system: It serves as a map, clarifying where
responsibilities lie, what services exist, and how data flows between
them. Instead of a flat diagram with dozens of boxes, containers
provide structure through logical groupings. 

Product owners and technical stakeholders: By tying containers to
subdomains and teams, they can better understand how
responsibilities are divided and how external services fit into the
system. 

At this level, one of the key benefits is making trade-offs explicit. For
example, persisting orders in DynamoDB with streams attached to
EventBridge is not just a technical implementation choice; it expresses
priorities like scalability, reliability, and eventual consistency. Similarly,
introducing a buffer through SQS queues shows how the architecture
anticipates high traffic without overwhelming downstream services. 

WHY THE CONTAINERS LEVEL MATTERS 



Finally, the containers level has an organizational dimension. By
structuring the e-commerce platform into subdomains and associating
a container or group of containers with teams, we make the team-to-
architecture mapping explicit. This is especially important in modern
microservice and micro-frontend architectures, where Conway’s Law
teaches us that team structures shape the system’s design. 

Being able to point to a container and say “this is the responsibility of
the Catalog team” clarifies ownership and avoids ambiguities. It also
supports practices like Team Topologies, where boundaries between
teams and services must be deliberately designed. 

CONTAINERS AS A FOUNDATION FOR TEAMS 

When working at the containers level, it’s easy to either oversimplify
(drawing only a couple of boxes) or overcomplicate (turning the diagram
into a wiring map). The following practices help strike the right balance:

Use deployability as your boundary A container represents
something that can be deployed, scaled, and operated
independently. If you can run it in its own process, VM, container,
or managed runtime, it’s a candidate for a container in your
diagram. This guideline keeps you from modeling at the wrong
level of abstraction. 

Make responsibilities explicit Every container should state in
plain language what it does. “Provides the products catalog,”
“Stores order details,” or “Processes payments” are clear and
accessible even to non-technical readers. Avoid purely technical
labels such as “Service A” or “DB1.”
 
Always annotate with technology The C4 model encourages
pairing responsibilities with technologies: Node.js – Provides the
products catalog, DynamoDB – Stores order details. This helps
readers quickly connect what something does with how it is
implemented. Over time, this practice also makes migrations or
technology choices transparent. 

BEST PRACTICES AND GUIDANCE FOR
MODELING CONTAINERS 



Treat databases as first-class citizens In many diagramming
notations, data stores are relegated to supporting roles. In C4,
databases are containers because they have runtime behavior,
scaling concerns, and operational impact. Modeling them
explicitly surfaces trade-offs (e.g., NoSQL vs relational, streams vs
queues) that often have architectural significance. 

Show external systems with equal clarity SaaS integrations
(e.g., Adyen for payments, Contentful for CMS, or a
personalization engine) should be modeled like any other
container. Even though you don’t build or deploy them, they
affect availability, resilience, and team responsibilities. 
 
Group containers by subdomain or team ownership Grouping
containers into subdomains (as in Catalog, Checkout, Fulfilment)
clarifies the business capabilities behind the architecture.
Mapping these groups to teams strengthens alignment between
architecture and organization — a key principle in modern,
distributed systems design

MORE THAN A STATIC PICTURE 
One of the powerful features of modern tools, such as IcePanel in our
case, is the ability to go beyond static diagrams. The Flow capability
allows us to illustrate sequences of interactions, such as a customer
browsing the catalog, placing an order, and processing payments. This
interactive view brings together what is often split between architecture
diagrams and sequence diagrams, enabling architects to “play” through
a scenario step by step.  



For example, the checkout flow starts with the customer invoking the
Checkout Micro-Frontend, which in turn communicates with the
Checkout Backend to generate order ID. Payment details are handled
via Adyen, receipts are written into a Payments Database, and orders
persisted in the Orders Database. From here, downstream processes
such as fulfilment and customer notifications are triggered. 

Explaining a diagram in a meeting using such features can drastically
simplify discussions. Rather than walking through a static drawing, you
can “play” the interactions and let the diagram tell the story. Even
outside of meetings, simply sharing a link to a C4 model diagram with a
new joiner allows them to walk through the system interactions at their
own pace. This not only accelerates onboarding but also provides clarity
without requiring someone to be physically present to explain the
architecture. 

INTERACTIVE DIAGRAM

THE COMPONENTS LEVEL

https://s.icepanel.io/bFTVyAkfwHLwV8/Jnbo
https://s.icepanel.io/bFTVyAkfwHLwV8/Jnbo


COMPONENTS LEVEL
The component level diagram in the C4 model zooms inside a container
to illustrate the major building blocks that make up that container and
how they collaborate. Each component is defined by its responsibilities
and boundaries, rather than its technical implementation. In practice, a
component might map to a module, a class, or a cohesive set of
functions that collectively provide part of the container’s behavior.  
The emphasis here is on showing how pieces fit together to deliver the
container’s purpose, without overwhelming detail. 

WHEN TO USE IT
Not every container warrants a component-level breakdown. For simple
services, a container-level view may be enough to communicate its
responsibilities. However, for complex or business-critical areas, the
component view can be invaluable. Examples include: 

An order management system, where multiple workflows (order
validation, payment, shipping) interact in subtle ways. 

An authentication service, which may include components for
credential storage, token generation, multi-factor validation, and
auditing. 

A catalog backend, where personalization, categorization, and
product details must be composed into a cohesive API. 

The rule of thumb: use component diagrams where additional clarity
helps reduce misunderstandings, speed onboarding, or highlight
architectural trade-offs. 



INTERACTIVE DIAGRAM

Consider a catalog backend service that powers the catalog UI of an e-
commerce platform. This container must: 

Retrieve data from the product database. 
Interact with an external personalization system to tailor results. 
Expose APIs for different catalog views: newest products, bestsellers,
personalized recommendations, and product detail pages. 

WHO IS INTERESTED
The audience for component-level diagrams is primarily developers
and architects. 

Developers benefit from understanding the internal structure of a
service before diving into the codebase. Architects use these diagrams
to reason about design choices—whether responsibilities are well-
separated, dependencies well-managed, and boundaries clearly defined.
Product owners or non-technical stakeholders usually don’t need this
level of detail. 

EXAMPLE: CATALOG BACKEND 

https://s.icepanel.io/bFTVyAkfwHLwV8/k7Nt
https://s.icepanel.io/bFTVyAkfwHLwV8/k7Nt


To get the most out of component-level diagrams, it is important to
strike a balance between detail and clarity. Components should be
documented selectively, focusing only on those areas of the system
where complexity makes additional structure valuable. The diagrams
should remain conceptual, emphasizing responsibilities and
relationships rather than drowning in implementation details.  

Keeping the number of components per view manageable ensures that
the diagram remains readable; if a service grows too large, it is better to
create sub-diagrams than to crowd everything into one picture.  

Naming conventions play a key role as well—aligning component names
with domain concepts, such as ProductRepository or CatalogService,
makes diagrams intuitive for both technical and business audiences. 
 
Finally, component-level diagrams should be treated as guides to design
intent rather than exact mirrors of the codebase. When deeper technical
precision is required, supplementing the diagram with direct references
to source repositories provides a way to stay up to date without
overloading the visual representation. 

At the component level, we might model the following building blocks: 

CatalogController Handles incoming API requests from the UI. 
CatalogService Orchestrates requests by delegating to the
repository and personalization client, applying business rules, and
shaping responses. 
ProductRepository Provides access to product data stored in the
database. 
PersonalizationClient Integrates with the external personalization
system. 

This view highlights not just the existence of a container but the
responsibilities and collaboration of its internal parts, making it easier to
onboard new developers or reason about future changes. 

BEST PRACTICES 

THE CODE LEVEL



The code level diagram is the most detailed step in the C4 model. It
drills down into a single component to show the internal structure of
classes, interfaces, methods, or functions. At this point, the diagram
resembles a UML class diagram or a package view of the source code.
The purpose is to give developers a concrete reference for how the
internals of a component are organized. 

For example, consider a CheckoutService component responsible for
orchestrating the shopping cart and payment workflow. A code-level
diagram might show the OrderValidator, PaymentProcessor, and
ReceiptGenerator classes, highlighting their responsibilities and
dependencies. This provides an explicit map of the moving parts within
the component. 

Despite its clarity, the code level is rarely used. In most cases,
developers prefer to consult the source code directly, and maintaining
these diagrams in sync with rapidly evolving codebases can become
tedious. Still, there are moments when they are valuable—for instance,
in safety-critical domains, in onboarding situations where internal
complexity must be explained quickly, or when documenting
frameworks and libraries for external consumers. 

A practical way to make this level relevant without creating
maintenance overhead is to link diagrams directly to the source code
repository. Instead of trying to freeze the code structure in static images,
reference the GitHub repository where the code lives. 
This ensures the diagrams remain lightweight while giving readers a
clear path to the latest, authoritative implementation details.
A simple annotation like “See GitHub repository: /checkout-service”
keeps the reference alive and trustworthy. 

In short, the code level is best used selectively, by architects and senior
developers, when there is a strong need to explain internal details.
When combined with links to living repositories, it can provide clarity
without adding unnecessary maintenance burden. 

CODE LEVEL



7C H A P T E R

IN SUMMARY



The C4 model gives us a structured way to tell the story of our software
architecture—from the broad strokes of the system context down to the
fine-grained details of code. By progressively refining the view, we can
communicate effectively with different audiences: business stakeholders
at the context level, developers and architects at the container and
component levels, and occasionally engineers at the code level. 

Across these diagrams, the key value lies in clarity. 

Instead of overwhelming teams with either vague abstractions or low-
level code, C4 provides just enough detail to illuminate responsibilities,
boundaries, and interactions. 

Combined with practices like Domain-Driven Design and explicit
mapping of containers to teams, this approach helps create
architectures that are both comprehensible and evolvable. Of course,
diagrams are only as valuable as they are maintained.

In fast-moving organizations, static drawings quickly become obsolete,
eroding trust. This is where modern tools come in. Platforms such as
IcePanel extend the C4 model beyond paper or slide decks, enabling
teams to keep diagrams synchronized with reality, explore system flows
interactively, and simplify discussions in meetings or onboarding
sessions. Features like dependency views, flows, and live links turn
diagrams into living documentation rather than one-off deliverables. 

If you are serious about improving the way your teams communicate
architecture, now is the time to try out a tool that makes C4 practical.
Whether you are scaling a microservices ecosystem, coordinating micro
frontends, or simply onboarding new developers, having living,
interactive diagrams can make the difference between confusion and
clarity. 

Start experimenting with C4 in your own systems and consider adopting
tools like IcePanel to bring your diagrams to life. The earlier you make
your architecture visible, shared, and continuously maintained, the more
resilient and aligned your teams will become. 

IN SUMMARY



The C4 Model was created by Simon Brown and is licensed under a Creative
Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

